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Why CP matrices?

Completely positive matrices (and the related copositive matrices) are
of interest in mathematical optimization:

Every nonconvex quadratic optimization problem over the simplex,

max{xT Qx |eT x = 1, xi ≥ 0 ∀i},

has an equivalent completely positive formulation (with J = eeT ):

max{〈Q,X 〉 | 〈J,X 〉 = 1,X is CP}.

Thus a nonconvex NP-hard optimization problem is transformed into a
linear problem in matrix variables over a convex cone of matrices,
shifting the difficulty of the problem entirely into the cone constraint.
This makes understanding the cone crucial for tackling the problem.
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CP matrices & the cp-rank

Definitions
A matrix A ∈ Rn×n is completely positive (CP) if ∃B ∈ Rn×k s.t.

A = BBT , B ≥ 0. (*)

The minimal number of columns of a B in (*) is cp-rankA.

Notation: CPn is the set of all n × n completely positive matrices.

CPn is a closed convex cone.

Every CP matrix is positive semidefinite and nonnegative (=doubly
nonnegative (DNN)).
The converse holds only for n ≤ 4.
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CP problems

Basic Problems
Identify / characterize CP matrices.

Compute / estimate cp-ranks.

Both are open and hard.
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Geometric interpretation

A is PSD ⇔ A =


vT

1

vT
2
...

vT
n


[

v1 v2 · · · vn
]

=
[
〈vi , vj〉

]
,

where v1, . . . , vn are vectors in an m-dimensional Euclidean space
(m = rank A).

A ≥ 0 ⇔ 〈vi , vj〉 ≥ 0 ∀i , j , i.e., the angle between vi and vj is ≤ π
2 .

A is CP ⇔ v1, . . . , vn can be isometrically embedded in the
nonnegative orthant of some k -dimensional Euclidean space.
cp-rank A = minimal such k .
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Using the geometric approach

yyy

 

 

Proves:

Theorem
A is DNN and rank A = 2 ⇒ A is CP and cp-rank A = 2.
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Geometric visualisation

4 unit vectors in R3:

Pippal (2013)
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The combinatorial approach

Many of the known results on CP matrices and the cp-rank are
graph-based.

Definition
∀ A ∈ Rn×n symmetric, the graph of A, G(A), is the simple undirected
graph with vertices {1, . . . ,n}, where ij is an edge if and only if
aji = aij 6= 0.

A = BBT , B = [b1 . . . bm] ⇔ A =
∑

bibT
i .

B ≥ 0 ⇒ no cancellations in the sum
⇒ ∀i , supp bi is a clique in G(A).

CP, COP matrices & Optimization 2013 8 / 45



The combinatorial approach

Many of the known results on CP matrices and the cp-rank are
graph-based.

Definition
∀ A ∈ Rn×n symmetric, the graph of A, G(A), is the simple undirected
graph with vertices {1, . . . ,n}, where ij is an edge if and only if
aji = aij 6= 0.

A = BBT , B = [b1 . . . bm] ⇔ A =
∑

bibT
i .

B ≥ 0 ⇒ no cancellations in the sum
⇒ ∀i , supp bi is a clique in G(A).

CP, COP matrices & Optimization 2013 8 / 45



The combinatorial approach

Many of the known results on CP matrices and the cp-rank are
graph-based.

Definition
∀ A ∈ Rn×n symmetric, the graph of A, G(A), is the simple undirected
graph with vertices {1, . . . ,n}, where ij is an edge if and only if
aji = aij 6= 0.

A = BBT , B = [b1 . . . bm] ⇔ A =
∑

bibT
i .

B ≥ 0 ⇒ no cancellations in the sum
⇒ ∀i , supp bi is a clique in G(A).

CP, COP matrices & Optimization 2013 8 / 45



The combinatorial approach

Many of the known results on CP matrices and the cp-rank are
graph-based.

Definition
∀ A ∈ Rn×n symmetric, the graph of A, G(A), is the simple undirected
graph with vertices {1, . . . ,n}, where ij is an edge if and only if
aji = aij 6= 0.

A = BBT , B = [b1 . . . bm] ⇔ A =
∑

bibT
i .

B ≥ 0 ⇒ no cancellations in the sum
⇒ ∀i , supp bi is a clique in G(A).

CP, COP matrices & Optimization 2013 8 / 45



The combinatorial approach

Many of the known results on CP matrices and the cp-rank are
graph-based.

Definition
∀ A ∈ Rn×n symmetric, the graph of A, G(A), is the simple undirected
graph with vertices {1, . . . ,n}, where ij is an edge if and only if
aji = aij 6= 0.

A = BBT , B = [b1 . . . bm] ⇔ A =
∑

bibT
i .

B ≥ 0 ⇒ no cancellations in the sum

⇒ ∀i , supp bi is a clique in G(A).

CP, COP matrices & Optimization 2013 8 / 45



The combinatorial approach

Many of the known results on CP matrices and the cp-rank are
graph-based.

Definition
∀ A ∈ Rn×n symmetric, the graph of A, G(A), is the simple undirected
graph with vertices {1, . . . ,n}, where ij is an edge if and only if
aji = aij 6= 0.

A = BBT , B = [b1 . . . bm] ⇔ A =
∑

bibT
i .

B ≥ 0 ⇒ no cancellations in the sum
⇒ ∀i , supp bi is a clique in G(A).

CP, COP matrices & Optimization 2013 8 / 45



Using the combinatorial approach

Definitions
A graph G is completely positive (CP) if
A is DNN & G(A) = G ⇒ A is CP.

Theorem
A graph G is CP ⇔ G contains no long (length ≥ 5) odd cycle.

Berman & Kogan (1993), Ando (1991). Also: Drew & Johnson (1996)
Used in proof: Berman & Hershkowitz (1987), Berman & Grone (1988)

The key: A No Long Odd Cycle graph looks like that:
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Each block is bipartite / has at most 4 vertices / consists of triangles
with a common base.
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Using the combinatorial approach (2)

Note: For every CP matrix, cp-rank A ≥ rank A.

Theorem
Every CP matrix A with G(A) = G satisfies cp-rank A = rank A if and
only if G contains no even cycle, and no triangle-free graph with more
edges than vertices.

Shaked-Monderer (2001)

The key: Such a graph looks like that:
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Each block is an edge / an odd cycle; at most one odd cycle is long.
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Upper bounds on the cp-rank

Problem
Find a (sharp) upper bound on the cp-ranks of matrices in CPn.

Known upper bounds
For n ≤ 4: A ∈ CPn ⇒ cp-rank A ≤ n.

Maxfield & Minc (1962)
Sharp! Since cp-rank A ≥ rank A.
∀n ≥ 2: A ∈ CPn ⇒ cp-rank A ≤

(n+1
2

)
− 1.

Hannah & Laffey (1983); Barioli & Berman (2003)
Sharp? Not for 3 ≤ n ≤ 4. Maybe for n ≥ 5?

The case n ≥ 5 is a totally different:

Difficulty in identifying CP matrices;

Bound definitely > n: ∀n ≥ 5, ∃A ∈ CPn with cp-rank A = bn2/4c.
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Hannah & Laffey (1983); Barioli & Berman (2003)
Sharp? Not for 3 ≤ n ≤ 4. Maybe for n ≥ 5?

The case n ≥ 5 is a totally different:

Difficulty in identifying CP matrices;

Bound definitely > n: ∀n ≥ 5, ∃A ∈ CPn with cp-rank A = bn2/4c.
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The DJL conjecture
∀n ≥ 4: A ∈ CPn ⇒ cp-rank A ≤ bn2/4c.

Drew, Johnson & Loewy (1994)

The DJL bound holds for A ∈ CPn

when G(A) is triangle free, or Drew, Johnson & Loewy (1994)

when G(A) has no long odd cycle, or Drew & Johnson (1996)

when M(A) is positive semidefinite, or Berman & S-M (1998)

when n = 5, and A has at least one zero. Loewy & Tam (2003)

(Here G(A) is the graph of the matrix A, M(A) is the comparison matrix
of A).

Common thread in most results: deal with matrices on ∂CPn.
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Are we looking under the lamp-post?

Long known result
The maximum cp-rank on CPn is attained on int CPn.

Proof:
Am → A & ∀m Am ∈ CPn, cp-rank Am ≤ k =⇒ cp-rank A ≤ k .

A ∈ ∂CPn =⇒ ∃ (Am)∞m=1 ⊆ int CPn s.t. Am → A.

Long asked question
Is the maximum also attained on the boundary?
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Recent Results

Theorem 1
∀n ≥ 2, the maximum of the cp-rank on CPn is attained at a
nonsingular matrix on ∂CPn.

Shaked-Monderer, Bomze, Jarre & Schachinger (2013)

So, considering matrices on the boundary is OK. But who are they?

intCPn and ∂CPn

A ∈ int CPn ⇐⇒ A = BBT , B ≥ 0 has rank n & a positive column.
Dür & Still (2008), Dickinson (2010)

A ∈ ∂CPn ⇐⇒ A⊥X for a copositive X .
(w.r.t. 〈A,X 〉 = trace(AX T ).)
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COP matrices

Definitions
A symmetric A ∈ Rn×n is copositive (COP) if xT Ax ≥ 0 ∀x ∈ Rn

+.

Notation: COPn is the set of all n × n copositive matrices.

Every Positive semidefinite matrix, and every nonnegative matrix, is
COP. Sums of such matrices also.
For n ≥ 5 there are also others. Example: the Horn matrix

H =


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 and more.

COPn is a closed convex cone.
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The cones CPn and COPn

CPn, COPn

CPn & COPn are convex cones with non-empty interiors.

CPn = {A |A = AT & 〈A,X 〉 ≥ 0 ∀X ∈ COPn}, and vice versa.
(CPn and COPn are dual cones).

For A ∈ CPn: A ∈ ∂CPn ⇔ 〈A,X 〉 = 0 for some X ∈ ext(COPn).
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The cones CPn and COPn, n = 2

Dickinson (2011)

CP, COP matrices & Optimization 2013 19 / 45



COP problems
Basic Problems

Identify / characterize COP matrices.

Charachterize extreme rays of COPn.

Both are open and hard.

Known extreme rays of COPn

PSD matrices of rank 1,

"elementary" symmetric (0,1)-matrices,

n = 5: the Horn matrix, Hall & Newman (1963)
∀n: certain (1,−1)- and (1,0,−1)-matrices,

Haynsworth & Hoffman (1969), Hoffman & Pereira (1973)
n = 5: Hildebrand matrices Hildebrand (2012)
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n = 5: Hildebrand matrices Hildebrand (2012)
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New upper bounds

The DJL conjecture holds for n = 5:

Theorem 2
∀A ∈ CP5, cp-rank A ≤ b52/4c = 6 (sharp).

Shaked-Monderer, Bomze, Jarre & Schachinger (2013)

Used in the proof: Theorem 1, Loewy & Tam’s result, Hildebrand’s
characterization; Also: graph theoretic result on the cp-rank.
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New upper bounds contd.

The Barioli-Berman bound is not sharp for n ≥ 5:

Theorem 3
∀A ∈ CPn, n ≥ 5, cp-rank A ≤

(n+1
2

)
− 4.

Shaked-Monderer, Berman, Bomze, Jarre & Schachinger (201?)

Used in the proof:

Theorem 4
∀A ∈ CPn,B ∈ COPn s.t. A⊥B, every column of A is orthogonal to the
corresponding column of B.

Shaked-Monderer, Berman, Bomze, Jarre & Schachinger (201?)
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New upper bounds contd.

Slight improvement for n = 6:

Theorem 5
∀A ∈ CP6, cp-rank A ≤ 15 =

(6
2

)
.

Shaked-Monderer, Berman, Bomze, Jarre & Schachinger (201?)
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Comments

Theorem 3 bound definitely not sharp for n = 5,6, most probably not
sharp for n > 6.

Theorem 5 bound may not be sharp.

CP, COP matrices & Optimization 2013 24 / 45



Comments

Theorem 3 bound definitely not sharp for n = 5,6, most probably not
sharp for n > 6.

Theorem 5 bound may not be sharp.

CP, COP matrices & Optimization 2013 24 / 45



Comments

Theorem 3 bound definitely not sharp for n = 5,6, most probably not
sharp for n > 6.

Theorem 5 bound may not be sharp.

CP, COP matrices & Optimization 2013 24 / 45



Copositive optimization

Burer has shown that every optimization problem with quadratic
objective function, linear constraints, and binary variables can be
equivalently written as a linear problem over the completely positive
cone. This includes many NP-hard combinatorial problems. The
complexity of these problems is then shifted entirely into the cone
constraint. In fact, even checking whether a given matrix is completely
positive is an NP-hard problem.

Replacing the completely positive cone by a tractable cone like the
cone of doubly nonnegative matrices results in a relaxation of the
problem providing a bound on its optimal value. For matrices of order
n ≤ 4, the doubly nonnegative cone equals the completely positive
which means that the relaxation is exact. For order n ≥ 5, however,
there are doubly nonnegative matrices that are not completely positive.
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Copositive cuts

Thus, in general, an optimal solution of the doubly nonnegative
relaxation is not completely positive. Therefore, it is desirable to add a
cut, i.e., a linear constraint that separates the obtained solution from
the completely positive cone, in order to get a tighter relaxation
yielding a better bound.

In [B, Duer, Shaked-Monderer and Witzel] we construct cutting planes
to separate doubly nonnegative matrices which are not completely
positive from the completely positive cone. In other words,
given X ∈ DNN n \ CPn, we aim to find a K ∈ COPn such that
〈K ,X 〉 < 0.
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Copositive cuts contd.
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Generating copositive cuts

The basic idea of our approach is stated in the following theorems:

Theorem
X ∈ CPn ⇔ ∃K ∈ COPn such that K ◦ X /∈ COPn.

Theorem
Let X ∈ DNN n \ CPn, and let K ∈ COPn be such that K ◦ X /∈ COPn.
Then for every nonnegative u ∈ Rn such that uT (K ◦ X )u < 0, the
copositive matrix K ◦ uuT is a cut separating X from CPn.

Proof.

〈K ◦ uuT ,X 〉 = uT (K ◦ X )u < 0.
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Generating copositive cuts contd.

If K ◦ X /∈ COPn, as assumed in the theorem, then by Kaplan’s
copositivity characterization, K ◦ X has a principal submatrix having a
positive eigenvector corresponding to a negative eigenvalue. This
shows that such u can be chosen as this eigenvector with zeros added
to get a vector in Rn.

The following property is obvious but useful, since it allows to construct
cutting planes based on submatrices instead of the entire matrix.

Lemma
Assume that K ∈ COPn is a copositive matrix that separates a
matrix X from CPn. If A ∈ Rn×p and B ∈ Rn×p are arbitrary matrices
with B symmetric, then the copositive matrix[

K 0
0 0

]
is a cut that separates

[
X A
AT B

]
from CPn+p.

CP, COP matrices & Optimization 2013 29 / 45



Generating copositive cuts contd.

We assume that the matrices that we want to separate from the
completely positive cone are irreducible, since any reducible
symmetric matrix can be written as a block diagonal matrix and then
the problem can be split into subproblems of smaller dimension where
each of the diagonal blocks is considered separately.

Note that for a cut it is desirable to have an extreme copositive
matrix K rather than just a copositive K , since an extremal matrix will
provide a supporting hyperplane and therefore a better (deeper) cut.
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Separating a triangle-free doubly nonnegative matrix

We assume that our matrix X ∈ DNN n has Xii 6= 0, otherwise the
corresponding row and column would be zero, and we can base our
cut on a submatrix with no zero diagonal elements. Furthermore, by
applying a suitable scaling if necessary we can assume that
diag (X ) = e.

Now suppose that an irreducible X ∈ DNN n has a triangle-free graph
G(X ).
Then we have

X = I + C, diag (X ) = e, G(X ) is connected and triangle-free. (1)

The matrix C has zero diagonal and G(C) = G(X ).
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Separating a triangle-free doubly nonnegative matrix

We now characterize complete positivity of X in terms of the spectral
radius of C.

Lemma
A matrix X ∈ DNN n of the form (1) is completely positive if and only if
the spectral radius ρ of C fulfills ρ ≤ 1.

Proof.
Since G(X ) is triangle-free, X ∈ COPn if and only if its comparison
matrix M(X ) is an M-matrix, which means that M(X ) can be written as
M(X ) = αI − P with P ≥ 0 and α ≥ ρ(P). In our case, we have

M(X ) = I − C,

which immediately gives the result.
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Separating a triangle-free doubly nonnegative matrix

For the separation of a doubly nonnegative matrix in the form (1) which
is not completely positive from CPn, we will use a {−1,0,1}-matrix:
Given a triangle-free graph G, let A be defined by:

Aij =


−1 if {i , j} is an edge of G,
+1 if the distance between i and j in G is 2,
0 otherwise.

(2)

We call this matrix the Hoffman-Pereira matrix corresponding to G. By
[Hoffman and Pereira (1973)] the matrix A is copositive whenever G is
triangle-free. If the diameter of G is 2, then the Hoffman-Pereira matrix
does not have zero entries, and is extreme. This is the case for n = 5,
and A is then the Horn matrix.
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Separating a triangle-free doubly nonnegative matrix

Theorem
Let X ∈ DNN n \ CPn be of the form (1), let u be the Perron vector of
C, and let A be the Hoffman-Pereira matrix corresponding to G(X ).
Then
(a) u > 0 and uT M(X )u < 0,
(b) M(X ) = X ◦ A and

K := A ◦ uuT

is a copositive matrix separating X from CPn.
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Separating a triangle-free doubly nonnegative matrix
Proof.
(a) The assumption that G(X ) is connected means that X , and

therefore C, is irreducible, which implies that u > 0 by the
Perron-Frobenius Theorem. Also,

uT M(X )u = uT u − uT Cu = uT u(1− ρ) < 0.

(b) It is easy to see that M(X ) = X ◦ A, and we have

〈X ,A ◦ uuT 〉 = 〈X ◦ A,uuT 〉 = uT (X ◦ A)u = uT M(X )u < 0.

Since u > 0 and A is copositive, the matrix K := A ◦ uuT is
copositive, which by the above is a cut that separates X from CPn.

Note that since u > 0, the cut matrix K is extreme if and only if the
Hoffman-Pereira matrix A is extreme. This happens, e.g., when the
graph G(X ) is an odd cycle.
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Application to the stable set problem
We illustrate the separation procedure by applying it to some instances
of the stable set problem.

As shown in [de Klerk and Pasechnik (2002)], the problem of
computing the stability number α of a graph G can be stated as a
completely positive optimization problem:

α = max{〈E ,X 〉 : 〈I,X 〉 = 1, 〈AG,X 〉 = 0, X ∈ CPn} (3)

where AG denotes the adjacency matrix of G. Replacing CPn by
DNN n results in a relaxation of the problem providing a bound on α.
This bound ϑ′ is called Lovász-Schrijver bound:

ϑ′ = max{〈E ,X 〉 : 〈I,X 〉 = 1, 〈AG,X 〉 = 0, X ∈ DNN n}. (4)

We consider some instances for which ϑ′ 6= α and aim to get better
bounds by adding cuts to the doubly nonnegative relaxation, using our
approach.
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Application to the stable set problem contd.

Let X̄ denote the optimal solution we get by solving (4). If ϑ′ 6= α,
then X̄ ∈ DNN n \ CPn. We want to find cuts that separate X̄ from the
feasible set of (3). If G(X̄ ) is triangle-free, we can separate X̄ from
CPn. Otherwise, we look for a principal submatrix whose graph is
triangle-free and its comparison matrix is not positive semidefinite,
construct a cut for this submatrix.
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Application to the stable set problem contd.

Let Y denote such a submatrix. In general, diag (Y ) 6= e as in (1).
Therefore, we consider the scaled matrix DYD, where D is a diagonal
matrix with Dii = 1√

Yii
. Since Y is a doubly nonnegative matrix having

a triangle-free graph, the same holds for DYD. Furthermore, DYD can
be written as DYD = I + C, where C is a matrix with zero diagonal
and G(C) a triangle-free graph. Let ρ denote the spectral radius of C
and let u be the eigenvector of C corresponding to the eigenvalue ρ.
Furthermore, let A be If ρ > 1, then we have

0 > 〈A ◦ uuT ,DYD〉 = 〈D(A ◦ uuT )D,Y 〉.

Therefore, D(A ◦ uuT )D defines a cut that separates Y from the
completely positive cone.
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Numerical results for some stable set problems

As test instances, we consider the 5-cycle C5 and the graphs G8, G11,
G14 and G17 from [ Pena, Vera and Zuluaga (2007)].
In each case we determine all submatrices as described above. It
turns out that for these instances the biggest order of such a submatrix
is 5× 5. The matrix A we use is therefore the Horn matrix. We then
solve the doubly nonnegative relaxation after adding each of these
cuts and after adding all computed cuts. The results are shown in the
Table below. We denote by ϑK

min and ϑK
max the minimal respectively

maximal bound we get by adding a single cut to the doubly
nonnegative relaxation (4), and ϑK

all denotes the bound we get after
adding all computed cuts. The last column indicates the reduction of
the optimality gap ϑ′ − α when all cuts are added.

CP, COP matrices & Optimization 2013 39 / 45



Numerical results for some stable set problems

Graph α ϑ′ ϑK
min ϑK

max ϑK
all # cuts reduction

C5 2 2.236 2.0000 2.0000 2.0000 1 100%
G8 3 3.468 3.3992 3.3992 3.2163 4 54%
G11 4 4.694 4.6273 4.6672 4.4307 10 38%
G14 5 5.916 5.8533 5.8977 5.6460 20 29%
G17 6 7.134 7.0745 7.1227 6.8615 35 24%

Table : Results on different stable set problems
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Happy Birthday Bob!

Based on:

N. Shaked-Monderer, I. M. Bomze, F. Jarre and W. Schachinger,
On the cp-rank and the minimal cp factorization. SIAM Journal on
Matrix Analysis and Applications, 34(2) (2013), pp. 355-368.

N. Shaked-Monderer, A. Berman, I. M. Bomze, F. Jarre and W.
Schachinger, New results on the cp rank and related properties of
co(mpletely )positive matrices.
http://arxiv.org/abs/1305.0737

A. Berman, M. Dür, N. Shaked-Monderer and J. Witzel, Cutting
planes for semidefinite relaxations based on triangle-free
subgraphs.
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